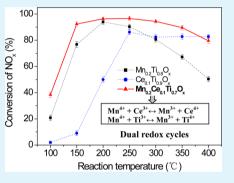
ACS APPLIED MATERIALS XINTERFACES

Novel Mn–Ce–Ti Mixed-Oxide Catalyst for the Selective Catalytic Reduction of NO_x with NH₃

Zhiming Liu,*^{,†} Junzhi Zhu,[†] Junhua Li,[‡] Lingling Ma,[§] and Seong Ihl Woo^{||}


[†]State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China [‡]School of Environment, Tsinghua University, Beijing 100084, China

[§]Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Department of Chemical and Biomolecular Engineering, Graduate School of EEWS(WCU), Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea

Supporting Information

ABSTRACT: Mn-Ce-Ti mixed-oxide catalyst prepared by the hydrothermal method was investigated for the selective catalytic reduction (SCR) of NO_x with NH₃ in the presence of oxygen. It was found that the environmentally benign Mn-Ce-Ti catalyst exhibited excellent NH₃-SCR activity and strong resistance against H₂O and SO₂ with a broad operation temperature window, which is very competitive for the practical application in controlling the NO_x emission from diesel engines. On the basis of the catalyst characterization, the dual redox cycles $(Mn^{4+} + Ce^{3+} \leftrightarrow Mn^{3+} + Ce^{4+}, Mn^{4+} + Ti^{3+} \leftrightarrow Mn^{3+} + Ti^{4+})$ and the amorphous structure play key roles for the high catalytic deNO, performance. Diffuse reflectance infrared Fourier transform spectroscopy studies showed that the synergetic effect between Mn and Ce contributes to the formation of reactive intermediate species, thus promoting the NH₃-SCR to proceed.

KEYWORDS: nitrogen oxides, selective catalytic reduction, manganese-cerium-titanium mixed oxide, in situ drifts, redox cycle

1. INTRODUCTION

NO_x removal from diesel engine exhaust remains one of the major challenges in environmental catalysis since the conventional three-way catalysts are no longer effective to reduce NO. under lean-burn conditions.¹ Selective catalytic reduction (SCR) of NO_x with NH₃ (NH₃-SCR) is regarded as one of the most promising technologies for the abatement of NO_x from diesel engines.¹ Although V₂O₅-WO₃(MoO₃)/TiO₂ catalyst has been widely used in the NH3-SCR for the removal of NO_x from stationary sources,^{1,2} the practical application of this catalyst system has been restrained for diesel engines due to the inevitable problems including the toxicity of vanadium species and the poor low-temperature activity.³ The temperature of the exhaust gas from diesel engine is mainly in the range of 150-350 °C.⁴ Zeolite-based NH₃-SCR catalysts have been studied extensively for reducing NO_x from diesel engine in recent years. But they often exhibit insufficient activity at low temperatures.³ To boost NO, reduction at low temperatures for diesel engine, one method is placing a diesel oxidation catalyst (DOC) upstream of the SCR converter to convert a portion of NO to NO₂, thus promoting the fast SCR reaction.⁵ However, the dynamic temperature and flow rate of the exhaust gases influence the oxidation activity of the DOC significantly; thus, the overall $deNO_x$ efficiency over the SCR unit is limited. Therefore, it is desirable to develop environmentally benign NH₃-SCR catalysts, with high SCR performance in a wide temperature range, for the control of NO_x emitted from diesel engines.

Mn-containing catalysts, such as MnOx/TiO2 and MnOx exhibited relatively high activity for the low-temperature NH₃-SCR.^{6,7} Amorphous manganese oxide was reported to be active for the NO_x reduction.⁸ Cr-MnO_x mixed-oxide catalyst is highly active in the range of 120–220 °C, and the reduction of Mn⁴⁺ to Mn³⁺ plays an important role.⁹ Thirupathi et al.¹⁰ also reported that the high reducibility of MnO₂ phase was responsible for the high SCR activity of the nickel-doped Mn/TiO₂ catalyst.

Besides Mn-containing catalysts, Ce-based NH₃-SCR catalyst has also attracted attention due to the high oxygen storage capacity and excellent redox property of CeO_2 .^{11–13} For the Ce-Ti mixed-oxide catalyst, the amorphous CeO₂ was suggested to be favorable for the NH_3 -SCR of NO_x .¹⁴ The doping of tungsten to Ce/TiO2 leads to an enhanced SCR activity due to the strong interaction between Ce and W.¹⁵ MnO_x -CeO₂ mixed oxides showed high NH₃-SCR activity between 100 and 200 °C.^{12,16} However, the narrow temperature window has restrained its application for the removal of NO_x from diesel engines.

Received: June 15, 2014 Accepted: July 21, 2014 Published: July 21, 2014

Considering that the redox property of the catalyst and the amorphous structure are closely related to the NH₃-SCR activity, the amorphous Mn–Ce–Ti mixed-oxide catalyst with dual redox cycles (Mn⁴⁺ + Ce³⁺ \leftrightarrow Mn³⁺ + Ce⁴⁺, Mn⁴⁺ + Ti³⁺ \leftrightarrow Mn³⁺ + Ti⁴⁺) was first fabricated, and it presented excellent NH₃-SCR activity and strong resistance against H₂O and SO₂ in a wide temperature window. The Mn–Ce–Ti catalyst could be a very competitive catalyst for the practical application in controlling the NO_x emission from diesel engines.

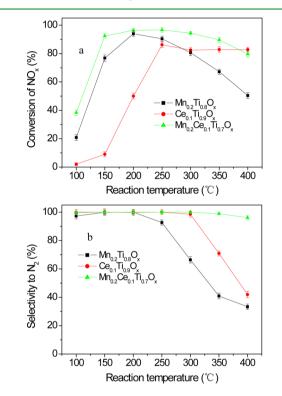
2. EXPERIMENTAL SECTION

2.1. Catalyst Preparation. The Mn-Ce-Ti catalysts with different ratios of Mn/Ce/Ti were prepared by the hydrothermal method. Appropriate amounts of $Mn(NO_3)_2 \cdot 3H_2O$, Ce $(NO_3)_3 \cdot 6H_2O$, and Ti $(SO_4)_2$ were dissolved in deionized water at room temperature and stirred for 1 h, then ammonia solution was added slowly to the above solution under vigorous stirring until pH is ca. 11. After stirring for 2 h, the obtained suspension was transferred to a Teflon-sealed autoclave and aged at 120 °C for 48 h. The obtained precipitate was filtered and washed with deionized water thoroughly. The resulting powder was dried at 120 °C for 12 h and then calcined in air at 500 °C for 6 h. For comparison, Mn-Ti and Ce-Ti catalysts were also prepared by the same preparation method as described above.

2.2. Catalytic Activity Measurement. The activity measurements were carried out in a fixed-bed quartz reactor using 0.12 g of catalyst of 40-60 mesh. The feed-gas mixture contained 500 ppm of NO, 500 ppm of NH₃, 0 or 5% H₂O, 0 or 50 ppm of SO₂, 5% O₂, and helium as the balance gas. The total flow rate of the feed gas was 300 cm³ min⁻¹, corresponding to a gas hourly space velocity (GHSV) of 64 000 h^{-1} . The reaction temperature was increased from 100 to 400 °C in steps of 50 °C. The composition of the product gas was analyzed by a chemiluminescence NO/NO2 analyzer (Thermal Scientific, model 42i-HL) and gas chromatograph (Shimadzu GC 2014 equipped with Porapak Q and Molecular sieve 5A columns). The activity data were collected when the catalytic reaction practically reached steadystate condition at each temperature. The effect of internal diffusion on the activity of the catalyst was investigated by comparing the catalytic activity over a variety of particle sizes of $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalyst including 50-70 and 60-80 mesh. The catalyst showed an essentially identical catalytic activity, regardless of the particle sizes of the catalyst. The reaction rate was obtained using the differential reactor over which the NO_x conversion was kept below 15%.

2.3. Catalyst Characterization. N_2 adsorption-desorption isotherms were obtained at liquid N_2 temperature (-196 °C) using a Quantachrome Nova Automated Gas Sorption System. The specific surface area was determined from the linear portion of the Brunauer-Emmett-Teller (BET) plot. The pore volume was calculated from the desorption branch of the N_2 adsorption isotherm using the Barrett-Joyner-Halenda (BJH) method. Prior to taking the surface area and pore volume measurement, the samples were degassed in a vacuum at 300 °C for 4 h. The elemental analysis of the prepared catalysts was performed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) on a Plasma-Spec-I spectrometer.

X-ray diffraction (XRD) measurements were carried out on a Rigaku D/MAX-RB X-ray Diffractometer with Cu K α radiation. The structure of catalyst was studied by the micro-Raman spectroscopy (Renisaw, InVia) under the 532 nm⁻¹ excitation laser light. The morphologies of the catalysts were investigated by field-emission scanning electron microscopy (SEM) images obtained by a Zeiss Supra55 instrument operated at a beam energy of 20 kV. XPS measurements were conducted on an ESCALab220i-XL electron spectrometer from VG Scientific using 300 W Mg K α radiation, calibrated internally by carbon deposit C 1s binding energy (BE) at 284.8 eV. A least-squares routine of peak fitting was used for the analysis of XPS spectra.


Temperature-programmed reduction (H₂-TPR) experiments were conducted on a chemisorption analyzer (Micromeritics, ChemiSorb

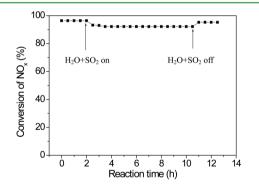
2720 TPx) under a 10% H_2 gas flow (50 mL min $^{-1})$ at a rate of 10 $^\circ C$ min $^{-1}$ up to 650 $^\circ C.$

2.4. In Situ DRIFTS Measurements. In situ DRIFTS experiments were performed on a Fourier transform infrared (FTIR) spectrometer (Nicolet 6700) equipped with a Harrick DRIFT cell containing ZnSe windows and MCT detector. Prior to each experiment, the sample was pretreated at 400 °C for 1 h in a flow of helium. The background spectrum was collected in flowing helium and was automatically subtracted from the sample spectrum. The reaction conditions were controlled as follows: 100 mL min⁻¹ total flow rate, 500 ppm of NH₃ or 500 ppm of NO + 5% O₂, and helium balance. All spectra were recorded by accumulating 100 scans with a resolution of 4 cm⁻¹.

3. RESULTS AND DISCUSSION

3.1. Comparison of NH₃-SCR Performance. Figure 1 showed the NH₃-SCR performance of $Mn_{0.2}Ti_{0.8}O_x$,

Figure 1. NH₃-SCR activity (a) and selectivity (b) of $Mn_{0.2}Ti_{0.8}O_{xy}$ Ce_{0.1}Ti_{0.9}O_{xy} and $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalysts (500 ppm of NO, 500 ppm of NH₃, 5% O₂, balance He, GHSV = 64 000 h⁻¹).


 $Ce_{0.1}Ti_{0.9}O_{x^{\prime}}$ and $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_{x}$ catalysts. It can be seen that $Ce_{0,1}Ti_{0,9}O_x$ exhibited low SCR activity below 250 °C, with only 10% NO_x conversion obtained at 150 °C. Mn_{0.2}Ti _{0.8}O_x showed relatively high activity from 150 to 300 $^\circ\text{C}.$ The N_2 selectivity of Mn_{0.2}Ti_{0.8}O_x and Ce_{0.1}Ti_{0.9}O_x catalyst was noticeably decreased above 250 and 300 °C, respectively. And it was as low as about 40% at 400 °C. In contrast, Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x catalyst afforded highly remarkable catalytic activity. It demonstrated a wide operation temperature window with over 90% NO_x conversion obtained from 150 to 350 $^{\circ}$ C, and even at 150 °C, 92% of NO_x conversion can be achieved. The reaction rate of $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ at 150 °C was 12.2 μ mol g^{-1} s⁻¹, which is much higher than that of Mn_{0.2}Ti_{0.8}O_x (4.5 μ mol g⁻¹ s⁻¹) and Ce_{0.1}Ti_{0.9}O_x (2.4 μ mol g⁻¹ s⁻¹) catalysts. More importantly, nearly 100% N₂ selectivity was obtained over $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ in the whole temperature range investigated.

ACS Applied Materials & Interfaces

Therefore, $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ is very active and selective for the NH₃-SCR of NO_x.

Qi et al.¹² found that the molar ratios of Mn/(Mn + Ce) are closely related to the NH_3 -SCR activity of MnO_x -CeO₂ mixedoxide catalyst. Therefore, the activities of Mn-Ce-Ti catalysts with various ratios of Mn/Ce/Ti were also investigated, and the results are shown in Supporting Information, Figure S1. It can be seen that $Mn_{0.1}Ce_{0.1}Ti_{0.8}O_x$, $Mn_{0.1}Ce_{0.2}Ti_{0.7}O_x$, and $Mn_{0.3}Ce_{0.1}Ti_{0.6}O_x$ exhibited similar activity with wide activity temperature window. $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ exhibited a super lowtemperature activity in the wide operating temperature window, indicating that it is promising for the control of NO_x emitted from diesel engine.

3.2. Effect of H₂O and SO₂. The effect of H₂O and SO₂ on the SCR activities of Mn_{0.2}Ti_{0.8}O_x, Ce_{0.1}Ti_{0.9}O_x, and $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalysts was also investigated. From the comparison of Figure 1 and Supporting Information, Figure S2, it can be seen that the presence of H₂O leads to the activity temperature window of Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x catalyst shifting to higher temperature by 50 °C. In the temperature range of 200-400 °C, more than 90% NO_x conversion was obtained, which is significantly higher than those obtained over Mn_{0.2}Ti_{0.8}O_x and $Ce_{0,1}Ti_{0,9}O_r$ catalysts (see Supporting Information, Figure S2a). Even in the copresence of H_2O and SO_{21} nearly 90% NO_x conversion was achieved from 200 to 400 °C. The conversion of NO_x is also much higher than those obtained over $Mn_{0.2}Ti_{0.8}O_x$ and $Ce_{0.1}Ti_{0.9}O_x$ catalysts (see Supporting Information, Figure S2b). The response of the NO_x conversion over Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x catalyst at 200 °C to the intermittent feed of H₂O and SO₂ was further investigated. As shown in Figure 2, the introduction of H₂O and SO₂ induced a slight

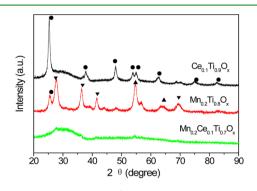


Figure 2. Response of the NO_x conversion over $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalyst at 200 °C to the intermittent feed of H₂O and SO₂ (500 ppm of NO, 500 ppm of NH₃, 5% O₂, 5% H₂O, 50 ppm of SO₂, balance He, GHSV = 64 000 h⁻¹).

decrease of the NO_x conversion. After excluding H₂O and SO₂ from the reactant feed, the NO_x conversion was almost recovered. Therefore, $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalyst displayed a satisfied resistance against H₂O and SO₂, which is very important for the potential deNO_x application.

3.3. BET Surface Area, XRD, Raman Spectra, and SEM. The chemical composition, BET surface area, and total pore volume of $Mn_{0.2}Ti_{0.8}O_{xr}$, $Ce_{0.1}Ti_{0.9}O_{xr}$ and $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_{xr}$ catalysts are listed in Table 1. The stoichiometry of the catalysts is close to the nominal values. It is evident that the surface area, pore diameter, and pore volume decreased in the order of $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x > Ce_{0.1}Ti_{0.9}O_x > Mn_{0.2}Ti_{0.8}O_x$. The high surface area of $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ could contribute to the high NH₃-SCR activity.

Figure 3 shows X-ray diffraction (XRD) patterns of $Mn_{0.2}Ti_{0.8}O_x$, $Ce_{0.1}Ti_{0.9}O_x$ and $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalysts.

Figure 3. XRD patterns of $Mn_{0.2}Ti_{0.8}O_{x^{\prime}}$ $Ce_{0.1}Ti_{0.9}O_{x}$ and $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_{x}$ catalysts: (\bullet) anatase TiO_{2j} ($\mathbf{\nabla}$) MnO_{2j} ($\mathbf{\Delta}$) $Mn_{2}O_{3}$.

Over Ce0.1Ti0.9Ox only an anatase structure (JCPDS 21-1272) was observed.¹⁷ The peak ascribed to crystalline CeO₂ phase (JCPDS 34-0394) was absent, indicating that CeO₂ was highly dispersed on the surface of TiO₂. Besides the weak peak assigned to anatase phase, the peaks ascribed to MnO_2 (JCPDS 42–1169) and Mn_2O_3 (JCPDS 41–1442) appeared over $Mn_{0.2}Ti_{0.8}O_x$ catalyst.^{8,18} No obvious peak was observed for $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_{xy}$ indicating a complete amorphous structure formed.¹⁹ Raman spectroscopy experiment was conducted for further investigation of structure phases of these catalysts. Five bands, corresponding to the six Raman-active modes, namely, E_{g} (144, 197, and 639 cm⁻¹), A_{1g} (519 cm⁻¹), and B_{1g} (399 and 519 cm⁻¹), are observed over $Ce_{0.1}Ti_{0.9}O_x$ catalyst (see Figure 4). The Raman peak pattern is similar to the typical feature of anatase-structured TiO2.20 Since MnO2 and Mn2O3 exhibited relatively weak Raman bands,21 these phases were not detected by the present Raman spectra. Any peak ascribed to TiO₂, manganese, and cerium oxides are not detected over Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x. This is in good accordance with the XRD result. These facts indicate that $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ mixed oxide is of amorphous structure, thereby maximizing the interaction among Mn, Ce, and Ti.¹⁹ The strong interaction between TiO₂ support and the active metal oxides contributes to the NH3-SCR activity.^{22,23} The amorphous structure is usually of higher surface area than the crystallized one. Therefore, the BET surface area of Mn–Ce–Ti catalyst is as high as $217 \text{ m}^2 \text{ g}^{-1}$,

Table 1. Chemical Composition and Textual Properties of the Different Catalysts

catalyst	chemical composition ^a	surface area $(m^2 g^{-1})$	pore diameter (nm)	pore volume $(cm^3 g^{-1})$
$Mn_{0.2}Ti_{0.8}O_x$	$Mn_{0.19}Ti_{0.81}O_x$	101 ± 2.0	3.25 ± 0.08	0.19 ± 0.01
$Ce_{0.1}Ti_{0.9}O_x$	$Ce_{0.10}Ti_{0.90}O_x$	161 ± 4.2	3.27 ± 0.09	0.32 ± 0.01
$Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$	$Mn_{0.19}Ce_{0.10}Ti_{0.71}O_x$	217 ± 6.1	3.38 ± 0.10	0.48 ± 0.01

^aChemical composition determined by ICP-AES.

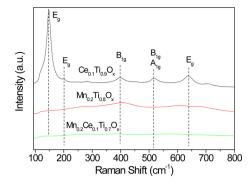


Figure 4. Raman spectra of $Mn_{0.2}Ti_{0.8}O_x$, $Ce_{0.1}Ti_{0.9}O_x$ and $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalysts.

which is much higher than that of TiO₂-based catalyst reported previously.^{13,15} With varying the ratio of Mn and Ce, no obvious peak was observed on the Mn–Ce–Ti mixed-oxide catalysts (see Supporting Information, Figure S3), suggesting that the amorphous structure was still formed.¹⁹

The amorphous structure of Mn–Ce–Ti mixed oxide was also reflected from the SEM images. As illustrated in Figure 5, $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ is of amorphous structure, and some nanosheets interweave in the structure, which leads to the high surface area. $Mn_{0.2}Ti_{0.8}O_x$ is also mainly composed of amorphous structure. The crystallinity was increased for $Ce_{0.1}Ti_{0.9}O_x$ catalyst, over which small particles agglomerate, forming a structure like cauliflower.

3.4. H₂-TPR Analysis. Temperature-programmed reduction $(H_2$ -TPR) analysis was conducted to investigate the reduction behavior of Mn_{0.2}Ti_{0.8}O_x, Ce_{0.1}Ti_{0.9}O_x, and Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x catalysts. As illustrated in Figure 6, two reduction peaks centered at \sim 250 and \sim 350 °C can be distinguished in the H₂-TPR profile of $Mn_{0.2}Ti_{0.8}O_x$ catalyst, which can be assigned to the reduction processes of $MnO_2 \rightarrow MnO_3 \rightarrow MnO.^{24,25}$ $Ce_{0,1}Ti_{0,9}O_r$, exhibited two reduction peaks at ~350 and 570 °C. The former small peak is probably assigned to the reduction of the surface oxygen of ceria, and the second reduction peak is due to the reduction of Ce^{4+} to $Ce^{3+26,27}$ Interestingly, the $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_r$ catalyst possesses two overlapped reduction peaks centered at ~350 and 486 °C, the former of which can be assigned to the two-step reduction process of MnO₂ via Mn₂O₃ to MnO, and the latter one is due to the reduction of Ce⁴⁺ to Ce^{3+} . Evidently, the reduction temperature of Ce^{4+} to Ce^{3+} was decreased, indicating that the ceria oxides becomes more reducible, which can be ascribed to the synergetic effect between Mn and Ce. The synergetic effect can effectively promote the redox properties of the Mn-Ce-Ti mixed-oxide catalyst.

3.5. XPS Analysis. To reveal the surface nature of the active sites over the catalyst systems X-ray photoelectron spectra (XPS) analysis was conducted. The XPS spectra of Mn 2p for $Mn_{0.2}Ti_{0.8}O_x$ and $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalysts are shown in Figure 7. For both catalysts two main peaks due to Mn $2p_{3/2}$ and $2p_{1/2}$ appear at ~642.0 and 653.5 eV, respectively. To better understand the manganese oxide phases and their relative intensities, the peak-fitting deconvolution was performed on Mn $2p_{3/2}$ and $2p_{1/2}$ peaks. As shown in Figure 7, both Mn $2p_{3/2}$ and $2p_{1/2}$ spectra can be separated into two characteristic peaks: the peaks at 641.2 and 653.2 eV correspond to Mn^{3+} , and those at 642.7 and 654.1 eV correspond to $Mn^{4+}.^{28}$ The ratio of Mn^{3+} , calculated by $Mn^{3+}/(Mn^{3+} + Mn^{4+})$, over $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ (71.0%) was

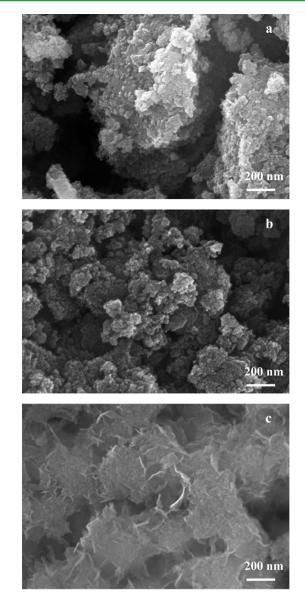


Figure 5. SEM images of $Mn_{0.2}Ti_{0.8}O_x$ (a), $Ce_{0.1}Ti_{0.9}O_x$ (b), and $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ (c) catalysts.

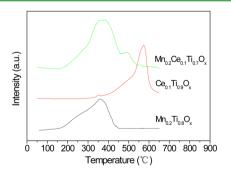


Figure 6. H_2 -TPR profiles of $Mn_{0.2}Ti_{0.8}O_{xy}$ $Ce_{0.1}Ti_{0.9}O_{xy}$ and $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalysts.

significantly higher than that over $Mn_{0.2}Ti_{0.8}O_x$ (23.8%). The complex spectrum of Ce 3d was decomposed into eight components with the assignment defined in Figure 8. The subbands labeled u' and v' represent the $3d^{10}4f^1$ initial electronic state corresponding to Ce³⁺, and those labeled u, u", u"', v, v", and v''' represent the $3d^{10}4f^0$ initial electronic state correspond-

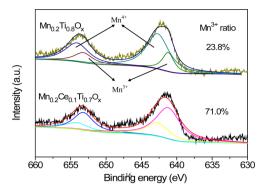


Figure 7. Mn 2p XPS spectra of $\rm Mn_{0.2}Ti_{0.8}O_x$ and $\rm Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalysts.

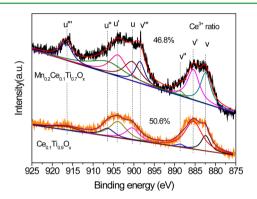


Figure 8. Ce 3d XPS spectra of $Ce_{0.1}Ti_{0.9}O_x$ and $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalysts.

ing to $Ce^{4+.17}$ The high ratio of Ce^{3+} exists on both $Ce_{0.1}Ti_{0.9}O_x$ and $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalysts. The binding energy of Ti $2p_{3/2}$ for $Ce_{0.1}Ti_{0.9}O_x$ is 459.9 eV, which can be ascribed to Ti^{4+} (see Figure 9).²⁹ Compared with $Ce_{0.1}Ti_{0.9}O_x$ catalyst, the peak

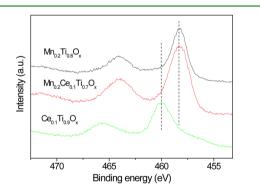
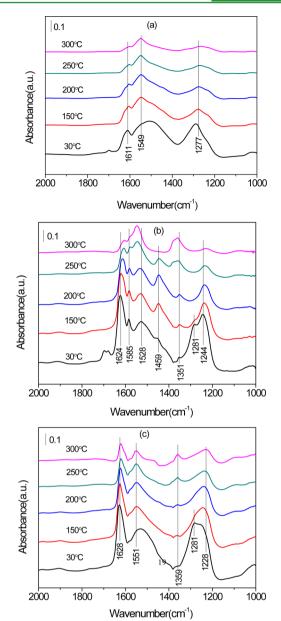



Figure 9. Ti 2p XPS spectra of $Mn_{0.2}Ti_{0.8}O_{x^{\prime}}$ $Ce_{0.1}Ti_{0.9}O_{x^{\prime}}$ and $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalysts.

position of Ti 2p for $Mn_{0.2}Ti_{0.8}O_x$ and $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalysts was shifted toward lower BE by 1.6 eV, suggesting that some Ti^{4+} could be reduced to $Ti^{3+.30,31}$ The high reducibility of Ti contributes to improve the NH_3 -SCR activity. ³⁰ On the basis of the XPS results analysis, the high ratio of Mn^{3+} over $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ can be ascribed to the redox process of Ce^{4+}/Ce^{3+} and Ti^{4+}/Ti^{3+} , both of which could transfer electrons to Mn^{4+} .

3.6. In Situ DRIFTS Studies. 3.6.1. Adsorption of NO + O_2 . Figure 10a shows the DRIFT spectra of NO + O_2 on $Mn_{0.2}Ti_{0.8}O_x$ catalyst at different temperatures. The bands at

Figure 10. DRIFT spectra of NO + O_2 on $Mn_{0.2}Ti_{0.8}O_x$ (a), $Ce_{0.1}Ti_{0.9}O_x$ (b), and $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ (c) catalysts at different temperatures.

1611, 1549, and 1277 cm⁻¹ can be assigned to the adsorbed NO₂ species,^{12,32} monodentate nitrate,³³ and chelating nitrite,³⁴ respectively. As shown in Figure 10b, more NO_x adsorption bands were observed over Ce_{0.1}Ti_{0.9}O_x catalyst. Besides the bands assigned to adsorbed NO₂ species (1624 cm⁻¹)¹² and chelating nitrite (1281 cm⁻¹), those assigned to bidentate nitrate (1585 and 1528 cm⁻¹),²⁵ trans-N₂O₂²⁻ (1459 cm⁻¹),¹² M–NO₂ nitro compounds (1351 cm⁻¹),³⁵ and bridging nitrate (1244 cm⁻¹),²⁵ respectively, were also observed. The DRIFT spectra of NO + O₂ on Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x catalyst at different temperatures was illustrated in Figure 10c. The intensity of the band ascribed to adsorbed NO₂ is high. Compared with Figure 10a,b, it is evident that the intensities of the bands assigned to monodentate nitrate and bridging nitrate over Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x catalyst are higher than those over Mn_{0.2}Ti_{0.8}O_x and Ce_{0.1}Ti_{0.9}O_x respectively. This fact suggests

that the synergetic effect between Mn and Ce contributes to the formation of monodentate nitrate and bridging nitrate species.

3.6.2. Adsorption of NH_3 . Figure 11 showed the DRIFT spectra of NH_3 adsorption on $Mn_0_2Ti_{0.8}O_{x_2}$ $Ce_{0.1}Ti_{0.9}O_{x_2}$ and

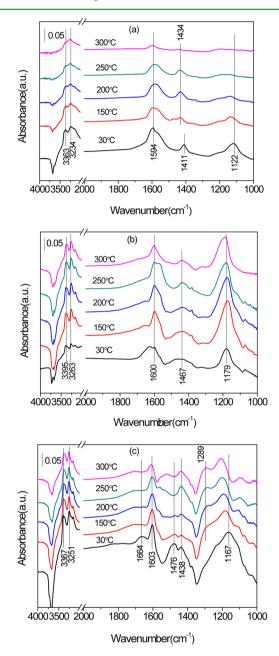



Figure 11. DRIFT spectra of NH₃ on $Mn_{0.2}Ti_{0.8}O_x$ (a), $Ce_{0.1}Ti_{0.9}O_x$ (b), and $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ (c) catalysts at different temperatures.

 $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalysts at different temperatures. Several bands at 3363, 3234, 1594, 1411, and 1122 cm⁻¹ were observed on $Mn_{0.2}Ti_{0.8}O_x$ catalyst (see Figure 11a). The bands at 1594 and 1122 cm⁻¹ are related to the coordinated NH₃ bound to Lewis acid sites, ^{36,37} and those at 3363 and 3234 cm⁻¹ can be ascribed to the N–H stretching vibration modes of the coordinated NH₃.³⁸ With increasing temperature, the peak at 1411 cm⁻¹ was shifted to 1434 cm⁻¹, which is attributed to the NH₄⁺ species on Brønsted acid sites.^{6,39} On Ce_{0.1}Ti_{0.9}O_x catalyst, the band ascribed to NH₄⁺ species was absent, while the intensities of the bands assigned to the adsorbed NH₃ on Lewis acid sites are much higher than those observed on $Mn_{0.2}Ti_{0.8}O_x$ catalyst (see Figure 11b). As shown in Figure 11c, both the peaks ascribed to the adsorbed NH_3 on Lewis acid sites and NH_4^+ species on Brønsted acid sites (1664 and 1438 cm⁻¹) were observed on $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalyst, and their intensities were higher than those observed on $Mn_{0.2}Ti_{0.8}O_x$ catalyst. Moreover, the peak assigned to the deformation species of adsorbed NH_3 (1289 cm⁻¹) appeared.⁴⁰ This fact indicates that more NH_3 will be adsorbed and activated over $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalyst.

3.6.3. Reactivity of Surface-Adsorbed Species. Figure 12 presents the DRIFT spectra of $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalyst in a

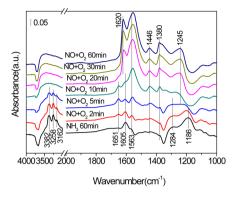


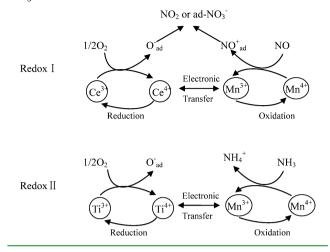
Figure 12. Dynamic changes of the in situ DRIFT spectra over $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalyst in a flow of NH₃ after the catalyst was preexposed to a flow of NO + O₂ for 60 min followed by helium purging for 30 min at 200 °C.

flow of NH₃ after the catalyst was pre-exposed to a flow of NO + O₂ for 60 min followed by helium purging for 30 min at 200 °C. It can be seen that switching the gas to NH₃ leads to the decrease of the intensities of NO₂ peak (1622 cm⁻¹), monodentate nitrate peak (1555 cm⁻¹), M–NO₂ nitro compounds and bridging nitrate peak (1236 cm⁻¹), indicating that these species are reactive in the NH₃-SCR process. Simultaneously, the peaks ascribed to the adsorbed NH₃ (3378, 3262, 3165, 1607, 1527, and 1278 cm⁻¹) appeared. Therefore, more reactive intermediates (NO₂, monodentate nitrate, M–NO₂ nitro compounds, and bridging nitrate) formed over Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x catalyst (see Figure 9c), thus leading to the high catalytic performance.

Figure 13 showed the DRIFT spectra of $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalyst in a flow of NO + O₂ after the catalyst was pre-exposed to a flow of NH₃ for 60 min followed by helium purging for 30 min at 200 °C. As illustrated in Figure 13, switching the gas to NO + O₂ leads to the decrease of the intensities of all bands assigned to ammonia species. And those bands vanished in 5 min. Meanwhile some new bands attributed to NO_x species appeared. This fact indicates that the adsorbed ammonia species are reactive in the NH₃-SCR of NO_x.

Zhang et al.¹⁹ reported that amorphous CeO₂ phase was active for the SCR of NO_x by NH₃, while crystallized CeO₂ was deleterious to the activity. Kapteijn et al.⁴¹ proposed that Mn_2O_3 exhibited high selectivity to N₂, while MnO_2 exhibited the highest activity. The presence of Mn^{3+} was also reported to play an important role in the SCR of NO_x by Li et al.⁹ In the present study, the amorphous Mn–Ce–Ti mixed oxides were first fabricated by hydrothermal method, and they exhibited high NH₃-SCR activity in a wide temperature window. On the

Figure 13. Dynamic changes of the in situ DRIFT spectra over $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalyst as a function of time in a flow of NO + O_2 after the catalyst was pre-exposed to a flow of NH₃ for 60 min followed by helium purging for 30 min at 200 °C.


basis of the catalyst characterization, it is a mixture of amorphous MnO_2 , Mn_2O_3 , CeO_2 , Ce_2O_3 , and TiO_2 .

The redox properties are the key factors controlling the reactivity of NH₃-SCR catalysts.^{11,17,22} For V₂O₅-based catalyst, the redox couples of V⁴⁺/V⁵⁺ seemed to play an important role for the SCR reaction to proceed.⁴² In the present study, the redox couples Mn⁴⁺/Mn³⁺, Ce⁴⁺/Ce³⁺, and Ti⁴⁺/Ti³⁺ exist over Mn-Ce-Ti catalyst. Dual redox cycles (Mn⁴⁺ + Ce³⁺ \leftrightarrow Mn³⁺ + Ce⁴⁺, Mn⁴⁺ + Ti³⁺ \leftrightarrow Mn³⁺ + Ti⁴⁺) are available only for Mn-Ce-Ti catalyst and not for Mn-Ti and Ce-Ti catalysts, and both of the cycles can promote each other. This will result in a decrease in the energy required for the electron transfer between Mn, Ce, and Ti active sites. The electronic transfer is closely related to the activation of NO and NH₃ during the NH₃-SCR of NO₂.

The high ratio of Ce³⁺ and Ti³⁺ present over $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalyst can induce more oxygen vacancies to form,¹³ which would promote the adsorption and activation of gas-phase oxygen. The activated oxygen atom plays an important role for the formation of NO2.32 From the comparison of Figure 10a,b, we can see that the intensities of the peaks ascribed to NO₂ and bridging nitrate over $Ce_{0,1}Ti_{0,9}O_x$ catalyst are higher than those observed over $Mn_{0.2}Ti_{0.8}O_x$ catalyst, indicating that the formation of NO₂ and bridging nitrate would be mainly over Ce active sites. Liu et al.²⁵ reported that the introduction of Mn to FeTiO_x catalyst contributed to the formation of Brønsted acid sites on the catalyst surface. From Figure 11 we can see that the band ascribed to NH4⁺ species on Brønsted acid sites appeared over Mn_{0.2}Ti_{0.8}O_x catalyst but not over Ce_{0.1}Ti_{0.9}O_x catalyst. This fact suggests that Mn active sites would be responsible for the formation of NH4⁺. Therefore, we proposed the dual redox cycles for the activation of NO_x and NH₃ over Mn-Ce-Ti catalyst as depicted in Scheme 1. NO2 could react with NH4+ to form NH₄NO₂ species, which reacted further to yield the NH₂NO. Then the NH₂NO decomposed to form N₂ and H₂O. Besides NO₂, the adsorbed monodentate nitrate and bridging nitrate would also react with the activated NH4⁺ or NH3 following the Langmuir-Hinshelwood mechanism. On the other hand, the adsorbed NH3 on Lewis acid sites would react with gas-phase NO (Eley-Rideal mechanism) to form N₂.

This research showed that the dual redox cycles $(Mn^{4+} + Ce^{3+} \leftrightarrow Mn^{3+} + Ce^{4+}, Mn^{4+} + Ti^{3+} \leftrightarrow Mn^{3+} + Ti^{4+})$ are the source of the synergistic effect on the catalytic properties of $Mn_{0.2}Ce_{0.1}Ti_{0.7}O_x$ catalyst, which facilitate the adsorption and

Scheme 1. Dual Redox Cycles for the Activation of NO and NH₃

activation of NO and $\rm NH_{3}$, as shown in the in situ DRIFTS studies above, consequently leading to an improved $\rm NH_{3}$ -SCR performance.

4. CONCLUSIONS

It has been demonstrated that an environmentally benign Mn-Ce-Ti mixed-oxide catalyst exhibited high catalytic activity for the NH_3 -SCR of NO_r in a wide temperature range. Moreover, this catalyst displayed high resistance against H₂O and SO₂. The dual redox cycles $(Mn^{4+} + Ce^{3+} \leftrightarrow Mn^{3+} + Ce^{4+}, Mn^{4+} +$ $Ti^{3+} \leftrightarrow Mn^{3+} + Ti^{4+}$) and the amorphous structure can account for the excellent NH₃-SCR catalytic performance of Mn-Ce-Ti catalyst. Compared with MnTi and CeTi catalysts, the adsorption and activation of NO and NH₃ was promoted over Mn-Ce-Ti catalyst, thus leading to an improvement of the NH₃-SCR performance. The present results have practical implications, as they may open new pathways for NO_r reduction at low temperatures, whereby diesel oxidation catalyst (DOC) positioned upstream of the SCR converter is no longer needed. Besides its application in diesel vehicles, this mixed-oxide catalyst is also promising for a number of modern stationary SCR applications.

ASSOCIATED CONTENT

Supporting Information

Figures showing catalyst activity versus temperature and XRD patterns. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: liuzm@mail.buct.edu.cn. Phone: +86-10-64427356. Notes

NULES

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was financially supported by the National Natural Science Foundation of China (21377010, 21325731), the Fundamental Research Funds for the Central Universities (YS1401), State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex (SCAPC201402), and the Program for New Century Excellent Talents of the Chinese Ministry of Education (NCET-13-0650).

REFERENCES

(1) Liu, Z. M.; Woo, S. I. Recent Advances in Catalytic DeNO_x. Science and Technology. *Catal. Rev.: Sci. Eng.* **2006**, *48*, 43–89.

(2) Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Chemical and Mechanistic Aspects of the Selective Catalytic Reduction of NO_x by Ammonia over Oxide Catalysts: A Review. *Appl. Catal., B* **1998**, *18*, 1–36.

(3) Long, R. Q.; Yang, R. T. Superior Fe-ZSM-5 Catalyst for Selective Catalytic Reduction of Nitric Oxide by Ammonia. J. Am. Chem. Soc. **1999**, 121, 5595–5596.

(4) Clerc, J. C. Catalytic Diesel Exhaust Aftertreatment. *Appl. Catal.,* B **1996**, *10*, 99–115.

(5) Forzatti, P.; Nova, I.; Tronconi, E. Enhanced NH_3 Selective Catalytic Reduction for NO_x Abatement. *Angew. Chem., Int. Ed.* **2009**, 48, 8366–8368.

(6) Smirniotis, P. G.; Peña, D. A.; Uphade, B. S. Low-Temperature Selective Catalytic Reduction (SCR) of NO with NH_3 by Using Mn, Cr, and Cu Oxides Supported on Hombikat TiO_2 . Angew. Chem., Int. Ed. **2011**, 40, 2479–2482.

(7) Kang, M.; Park, E. D.; Kim, J. M.; Yie, J. E. Manganese Oxide Catalysts for NO_x Reduction with NH₃ at Low Temperatures. *Appl. Catal.*, A **2001**, 327, 261–269.

(8) Wu, Z. B.; Jiang, B. Q.; Liu, Y. Effect of Transition Metals Addition on the Catalyst of Manganese/Titania for Low-Temperature Selective Catalytic Reduction of Nitric Oxide with Ammonia. *Appl. Catal.*, B 2008, 79, 347–355.

(9) Chen, Z.; Yang, Q.; Li, H.; Li, X.; Wang, L.; Tsang, S. C. Cr- MnO_x Mixed-Oxide Catalysts for Selective Catalytic Reduction of NO_x with NH_3 at Low Temperature. *J. Catal.* **2010**, *276*, 56–65.

(10) Thirupathi, B.; Smirniotis, P. G. Nickel-Doped Mn/TiO_2 as An Efficient Catalyst for the Low-Temperature SCR of NO with NH₃: Catalytic Evaluation and Characterizations. *J. Catal.* **2012**, 288, 74–83.

(11) Qi, G.; Yang, R. T. A Superior Catalyst for Low-Temperature NO Reduction with NH₃. *Chem. Commun.* **2003**, *7*, 848–849.

(12) Qi, G.; Yang, R. T.; Chang, R. MnO_x -CeO₂ Mixed Oxides Prepared by Co-Precipitation for Selective Catalytic Reduction of NO with NH₃ at Low Temperatures. *Appl. Catal.*, B **2004**, *51*, 93–106.

(13) Shan, W.; Liu, F.; He, H.; Shi, X.; Zhang, C. Novel Cerium-Tungsten Mixed-Oxide Catalyst for the Selective Catalytic Reduction of NO_x with NH₃. *Chem. Commun.* **2011**, *47*, 8046–8048.

(14) Shan, W.; Liu, F.; He, H.; Shi, X.; Zhang, C. The Remarkable Improvement of a Ce–Ti-Based Catalyst for NO_x Abatement, Prepared by a Homogeneous Precipitation Method. *ChemCatChem* **2011**, *3*, 1286–1289.

(15) Chen, L.; Li, J. H.; Ge, M. F.; Zhu, R. H. Enhanced Activity of Tungsten Modified CeO_2/TiO_2 for Selective Catalytic Reduction of NO_x with Ammonia. *Catal. Today* **2010**, *153*, 77–83.

(16) Liu, Z. M.; Yi, Y.; Zhang, S. X.; Zhu, T. L.; Zhu, J. Z.; Wang, J. G. Selective Catalytic Reduction of NO_x with NH_3 over Mn-Ce Mixed Oxide Catalyst at Low Temperatures. *Catal. Today* **2013**, *216*, 76–81.

(17) Shan, W.; Liu, F.; He, H.; Shi, X.; Zhang, C. A Superior Ce–W–Ti Mixed Oxide Catalyst for the Selective Catalytic Reduction of NO_x with NH₃. *Appl. Catal., B* **2012**, *115/116*, 100–106.

(18) Chen, Z. H.; Wang, F. R.; Li, H.; Yang, Q.; Wang, L. F.; Li, X. H. Low-Temperature Selective Catalytic Reduction of NO_x with NH_3 over Fe–Mn Mixed-Oxide Catalysts Containing $Fe_3Mn_3O_8$ Phase. *Ind. Eng. Chem. Res.* **2012**, *51*, 202–212.

(19) Li, P.; Xin, Y.; Li, Q.; Wang, Z.; Zhang, Z.; Zheng, L. Ce-Ti Amorphous Oxides for Selective Catalytic Reduction of NO with NH₃: Confirmation of Ce–O–Ti Active Sites. *Environ. Sci. Technol.* **2012**, *46*, 9600–9605.

(20) Yu, S.; Yun, H. J.; Lee, D. M.; Yi, J. Preparation and Characterization of Fe-Doped TiO₂ Nanoparticles as a Support for A High Performance CO Oxidation Catalyst. *J. Mater. Chem.* **2012**, *22*, 12629–12635.

(21) Hong, W.; Iwamoto, S.; Hosokawa, S.; Wada, K.; Kanai, H.; Inoue, M. Effect of Mn Content on Physical Properties of CeO_x -MnO_y Support and BaO–CeO_x-MnO_y Catalysts for Direct NO Decomposition. J. Catal. **2011**, 277, 208–216.

(22) Li, Y.; Cheng, H.; Li, D.; Qin, Y.; Xie, Y.; Wang, S. WO_3/CeO_2-ZrO_2 , A Promising Catalyst for Selective Catalytic Reduction (SCR) of NO_x with NH_3 in Diesel Exhaust. *Chem. Commun.* **2008**, *12*, 1470–1472.

(23) Qi, G.; Yang, R. T.; Chang, R. Low-Temperature Selective Catalytic Reduction of NO with NH₃ over Iron and Manganese Oxides Supported on Titania. *Appl. Catal., B* **2003**, *44*, 217–225.

(24) Chen, H.; Sayari, A.; Adnot, A.; Larachi, F. Composition-Activity Effects of Mn-Ce-O Composites on Phenol Catalytic Wet Oxidation. *Appl. Catal., B* **2001**, *32*, 195–204.

(25) Liu, F. D.; He, H.; Ding, Y.; Zhang, C. B. Effect of Manganese Substitution on the Structure and Activity of Iron Titanate Catalyst for the Selective Catalytic Reduction of NO with NH₃. *Appl. Catal., B* **2009**, *93*, 194–204.

(26) Thirupathi, B.; Smirniotis, P. G. Co-Doping a Metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO_2 Catalyst and Its Effect on the Selective Reduction of NO with NH₃ at Low Temperatures. *Appl. Catal.*, B **2011**, *110*, 195–206.

(27) Yang, D.; Wang, L.; Sun, Y.; Zhou, K. Synthesis of One-Dimensional $\operatorname{Ce}_{1-x}Y_xO_{2-x/2}$ ($0 \le x \le 1$) Solid Solutions and Their Catalytic Properties: The Role of Oxygen Vacancies. *J. Phys. Chem. C* **2010**, *114*, 8926–8932.

(28) Kang, M.; Park, E. D.; Kim, J. M.; Yie, J. E. Manganese Oxide Catalysts for NO_x Reduction with NH₃ at Low Temperatures. *Appl. Catal.*, A 2007, 327, 261–269.

(29) Oku, M.; Wagatsuma, K.; Kohikib, S. Ti 2p and Ti 3p X-ray Photoelectron Spectra for TiO₂, SrTiO₃, and BaTiO₃. *Phys. Chem. Chem. Phys.* **1999**, *1*, 5327–5331.

(30) Seo, P. W.; Cho, S. P.; Hong, S. H.; Hong, S. C. The Influence of Lattice Oxygen in Titania on Selective Catalytic Reduction in the Low-Temperature Region. *Appl. Catal., A* **2010**, *380*, 21–27.

(31) Lee, J. Y.; Hong, S. H.; Cho, S. P.; Hong, S. C. The Study of $DeNO_x$ Catalyst in Low Temperature Using Nano-Sized Supports. *Curr. Appl. Phys.* **2006**, *6*, 996–1001.

(32) Chen, L.; Li, J. H.; Ge, M. F. DRIFT Study on Ceriumtungsten/Titiania Catalyst for Selective Catalytic Reduction of NO_x with NH_3 . *Environ. Sci. Technol.* **2010**, *44*, 9590–9596.

(33) Liu, Z.; Woo, S. I.; Lee, W. S. In situ FT-IR Studies on the Mechanism of Selective Catalytic Reduction of NO_x by Propene over SnO_2/Al_2O_3 Catalyst. J. Phys. Chem. B **2006**, 110, 26019–26023.

(34) Costa, C. N.; Efstathiou, A. M. Transient Isotopic Kinetic Study of the $NO/H_2/O_2$ (Lean de- NO_x) Reaction on Pt/SiO_2 and Pt/La-Ce-Mn-O Catalysts. J. Phys. Chem. B **2004**, 108, 2620–2630.

(35) Wu, Z. B.; Jiang, B. Q.; Liu, Y.; Wang, H. Q.; Jin, R. B. DRIFT Study of Manganese/Titania-Based Catalysts for Low-Temperature Selective Catalytic Reduction of NO with NH₃. *Environ. Sci. Technol.* **2007**, *41*, 5812–5817.

(36) Lietti, L.; Nova, I.; Ramis, G.; Dalll̈́Acqua, L.; Busca, G.; Giamello, E.; Forzatti, P.; Bregani, F. Characterization and Reactivity of V_2O_5 -Mo O_3 /Ti O_2 De-NO_x SCR Catalysts. *J. Catal.* **1999**, *187*, 419–435.

(37) Larrubia, M. A.; Ramis, G.; Busca, G. An FT-IR Study of the Adsorption of Urea and Ammonia over V_2O_5 -MoO₃-TiO₂ SCR Catalysts. *Appl. Catal., B* **2000**, *27*, L145–L151.

(38) Dall'Acqua, L.; Nova, I.; Lietti, L.; Ramis, G.; Busca, G.; Giamello, E. Spectroscopic Characterization of $MoO_3/TiO_2 DeNO_x$ -SCR Catalysts: Redox and Coordination Properties. *Phys. Chem. Chem. Phys.* **2000**, *2*, 4991–4998.

(39) Lin, S. D.; Gluhoi, A. C.; Nieuwenhuys, B. E. Ammonia Oxidation over $Au/MO_x/c-Al_2O_3$ -Activity, Selectivity, and FTIR Measurements. *Catal. Today* **2004**, *90*, 3–14.

(40) Yang, S.; Wang, C.; Li, J.; Yan, N.; Ma, L.; Chang, H. Low-Temperature Selective Catalytic Reduction of NO with NH₃ over Mn–Fe Spinel: Performance, Mechanism and Kinetic Study. *Appl. Catal.*, B **2011**, *110*, 71–80.

(41) Kapteijn, F.; Singoredjo, L.; Andreini, A.; Moulijn, J. A. Activity and Selectivity of Pure Manganese Oxides in the Selective Catalytic Reduction of Nitric Oxide with Ammonia. *Appl. Catal., B* **1994**, *3*, 173–189.

(42) Topsøe, N. Y.; Dumesic, J. A.; Topsøe, H. Vanadia/Titania Catalysts for Selective Catalytic Reduction (SCR) of Nitric Oxide by Ammonia. II: Studies of Active Sites and Formulation of Catalytic Cycles. J. Catal. **1995**, *151*, 241–252.